


ABOUT ME

3

1. Developer Advocate @ 
SmartBear

2. Tester/Developer/Consultant 
since 2007

3. Once left IT as a career to restore 
old automobiles, but returned as 
I enjoyed conversing, learning 
and teaching

you54f



Agenda
& housekeeping

AGENDA + HOUSEKEEPING

The 2 - 2.5 hour workshop covers:

1. Introduction to Pact (presentation)
2. Hands-on lab (step 1-5)
3. 5-10 minute break
4. Hands-on lab cont. (step 6-12)
5. Q&A

🔴 Session is being recorded



The numbers
Four key indicators of high performing organisations1

Need < 1 day lead time for changes  = 106x faster time from commit -> deploy

Are able to deploy on demand  = 208x more deployments

Have change failures rates < 15% = 7x lower change failure rates

Can restore services within 1 hour = 2604x faster MTTR

BACKGROUND

1 Data from the DORA 2019 State of DevOps report

https://cloud.google.com/devops/state-of-devops


The numbers
Challenges facing the market

Only 20% of companies are “elite” performers1

81% of teams spend a third of their time or more on fixing environments2

36% of teams are impacted by wait times and cost of test environments2

76% spent one third of their time or more managing test data2

1 Data from the DORA 2019 State of DevOps report
2 Data from a Capgemini report on continuous testing in March 2019

BACKGROUND

https://cloud.google.com/devops/state-of-devops
https://www.capgemini.com/us-en/wp-content/uploads/sites/4/2019/03/CTR-Infographic.pdf


In 2013 we created Pact, an Open Source tool to solve this 
problem. In 2019, we launched PactFlow to enable 

organisations to do this at scale. In 2022, we were acquired by 
SmartBear allowing us to fit our contract-testing story, 

alongside a suite of tools designed to address the challenges of 
API and Product development, affecting the teams of today, and 

generations beyond.

ABOUT PACTFLOW



- Slow

- Fragile

- Hard to debug

- Test data management + environment management

- Coverage?

- All-at-once painful deployments

- Teams wait on build queues

HOW WE TEST MICROSERVICES NOW

Microservice A

API Gateway

Microservice B

JSON/HTTP

JSON/HTTP JSON/HTTP

JSON/HTTP

Microservice C
JSON/XML

MQ

JSON/HTTP

JSON/HTTP

The old way...
Why this is hard

#1 #2 #3 #4 #5



HOW WE TEST MICROSERVICES NOW

Scaling

Cost / 
Complexity 
/ Time

Number teams / components

Build time

# Environments

Risk associated with 
change

Teams + Components
Linear increase in teams 
and components results in 
exponential increase in 
other factors

Developer idle time 
(queues)



HOW WE TEST MICROSERVICES NOW

“Integration tests are a scam”

- JB Rainsberger



HOW WE TEST MICROSERVICES NOW

Scam, you say? Justify!

Integrated tests are:

● Slow
● Fragile 
● Hard to manage

When they fail, you can’t point to the problem!



HOW WE TEST MICROSERVICES NOW



HOW WE TEST MICROSERVICES NOW

Branches per box vs test cases required

2 code branches = 128 tests
5 code branches = 78,125 tests
10 code branches = 10M tests



HOW WE TEST MICROSERVICES NOW



A BETTER WAY TO TEST MICROSERVICES

Good tests have the exact opposite properties



A BETTER WAY TO TEST MICROSERVICES

Mocks to the rescue?



A BETTER WAY TO TEST MICROSERVICES



A BETTER WAY TO TEST MICROSERVICES



A BETTER WAY TO TEST MICROSERVICES

20

Mocks
Solved problems New problems

● Hard to keep both sides in 
sync

● Fast feedback

● Few dependencies

● No dedicated environment

● Reliable

● Easy to debug



A BETTER WAY TO TEST MICROSERVICES

How about API Specs?



A BETTER WAY TO TEST MICROSERVICES

How to: Spec first development

1. Architect independent of teams postulate API requirements
2. Document perfect API (Swagger/OAS etc.)
3. Create said API
4. Publish said document to consumers
5. Repeat steps 1-4



A BETTER WAY TO TEST MICROSERVICES



A BETTER WAY TO TEST MICROSERVICES



A BETTER WAY TO TEST MICROSERVICES

Specification first design

1 2



A BETTER WAY TO TEST MICROSERVICES

Solved problems New problems

● Who is using my API?
● Requires diligence to ensure 

backwards compatibility
● Developers hate maintaining 

versioning
● Limited by expressiveness of 

specification (vague)
● = Hard to get 100% coverage 

(can only say “not incompatible”)

● Good documentation

● Aides discoverability and 
communication between 
teams/organisations

● Clearer expectations on API

Specification first design



A BETTER WAY TO TEST MICROSERVICES

Enter Consumer Driven Contracts



A BETTER WAY TO TEST MICROSERVICES



A BETTER WAY TO TEST MICROSERVICES

Benefits

You know when you break a consumer

You get a form of documentation

You can test things independently

Consumer Driven Contracts



REDUCING THE COST > contract testing

What is Contract Testing?
An alternative approach

Benefits:

- Simpler - test a single integration at a time - without 
having to deploy

- No dedicated test environments - run on a dev machine
- Get fast, reliable feedback
- Tests that scale linearly
- Deploy services independently

Pact removes the need for complicated release coordination: we 
have static knowledge about system compatibility.



PRODUCT

Microservice A

API Gateway

Microservice B

JSON/HTTP

JSON/HTTP JSON/HTTP

JSON/HTTP

What is Pact?
Microservice testing made easy

Pact is an Open Source, consumer driven contract testing
tool that makes it easy to test microservices quickly, 
independently and release safely.

Use cases:

- Javascript web applications (e.g. React)
- Native mobile applications
- RESTful microservices with JSON and XML
- Asynchronous messaging (e.g. MQ)

Goals:

- Removing end-to-end integrated tests
- Reducing reliance on complex test     

environments Microservice C
JSON/XML

MQ

JSON/HTTP



Open Source
...and in your preferred language

PRODUCT



Interaction Types

Concepts

Types of interactions:

• Synchronous/HTTP

• Asynchronous/Messages

• Synchronous/Messages

By combining interaction types with the various Plugin capabilities, rich support for various 
frameworks and protocols emerge.

REST (JSON/HTTP), SOAP (XML/HTTP), JSON-RPC, GraphQL

Use Cases

Kafka, Fire and Forget, Server Push

gRPC/protobufs, Websockets, MQTT, Data Pipelines, AWS Lambda

https://github.com/pact-foundation/pact-specification/tree/version-4#interactions

https://github.com/pact-foundation/pact-specification/tree/version-4


HOW PACT WORKS
(HTTP)



HOW IT WORKS > OVERVIEW

1

Consumer unit tests
its behaviour against 

provider mock

5

Provider tests mock out 
any other systems, so it 

can be tested in isolation

4
Requests in contract replayed

against provider API and verified 
against consumer(s) expectationsContract

2
Required interactions are 
captured into a contract
between systems

3
Contract is shared amongst teams to enable 
collaboration, using tools like Pactflow



Contract

{

“id”: 1234,

“items”:[

...

],

}

Consumer

Provider

GET /orders/1234

HOW IT WORKS > HTTP > TERMINOLOGY

Microservice B



HOW IT WORKS > HTTP

Microservice B



HOW IT WORKS > HTTP

Mock

Step 1: test the consumer (contract capture)

Microservice B



HOW IT WORKS > HTTP

Mock

GET /orders/1234

Microservice B

Step 1: test the consumer (contract capture)



HOW IT WORKS > HTTP

Mock

{

“id”: 1234,

“items”:[

...

],

}

GET /orders/1234

Microservice B

Step 1: test the consumer (contract capture)



HOW IT WORKS > HTTP

Mock

{

“id”: 1234,

“items”:[

...

],

}

GET /orders/1234

Microservice B

Step 1: test the consumer (contract capture)

✔
Pact mock checks:

1. Consumer makes the correct call to API
2. Consumer code can handle the response



HOW IT WORKS > HTTP

Mock

Step 2: share the contract with the Pactflow

Microservice B



HOW IT WORKS > HTTP

Pact

GET /orders/1234

Step 3: test the provider (contract validation)

Microservice B



HOW IT WORKS > HTTP

Pact

{

“id”: 1234,

“items”:[

...

],

}

GET /orders/1234

Microservice B

Step 3: test the provider (contract validation)



HOW IT WORKS > HTTP

Pact ✔

Microservice B

Step 3: test the provider (contract validation)



HOW IT WORKS > HTTP

Pact

{

“id”: 1234,

“items”:[

...

],

}

GET /orders/1234

Microservice B

Step 3: test the provider (contract validation)

✔ Pact verifier checks:

1. All known consumers of the provider
2. Provider can respond to all requests for each 

consumer
3. For each request, the response (headers, 

status, body etc.) matches rules in the contract



HOW IT WORKS: CONSUMER

Adapters

Services

Domain

Repositories

Co
lla

bo
ra

to
rs

External 
Service

Scope of 
consumer test



HOW IT WORKS: PROVIDER

Scope of Provider 
Test

Adapters

Services

Domain

Repositories Co
lla

bo
ra

to
rs

mock

In-memory database



HOW IT WORKS
(bi-directional contracts - PactFlow only feature)



PROBLEM STATEMENT

what are bi-directional contracts?

When contract-testing with Pact, you need to write and maintain a separate set of tests that are responsible for ensuring 
systems are compatible.

Unlike Pact, Bi-directional contracts allows teams to generate a contract from existing mocks (such as Wiremock), and to 
verify API providers using the functional API testing tools they are already using (such as Postman). Teams can use our plug-
and-play adapters for popular tools or write their own.

All of the usual PactFlow collaboration tools and benefits apply, including the use of tools such as can-i-deploy.

With bi-directional contracts, you can “upgrade” your existing tools into a powerful contract-testing solution, simplifying 
adoption and rapidly improving time-to-value and ROI.



HOW IT WORKS > BI-DIRECTIONAL CONTRACTS

Publish contract

How it works

Verifies a 
“provider 
contract”

Produces a 
“consumer 
contract”

2 5

Provider

Provider Testing 
Tool (BYO)

4

Consumer

Mock 
(e.g. Pact)

1
Consumer tests 

behaviour against 
mock

Publish to 
Pactflow

3



HOW IT WORKS > BI-DIRECTIONAL CONTRACTS

Publish contract

How it works

Verifies a 
“provider 
contract”

Produces a 
“consumer 
contract”

2 4

Provider

Provider Testing 
Tool (BYO)

3

Consumer

Mock 
(e.g. Pact)

1
Consumer tests 

behaviour against 
mock

This is called the 
“cross contract validation”

Pactflow will perform a 
check, to confirm that 

the Pact contract is 
compatible with the 

Provider OAS 

6



HOW IT WORKS > BI-DIRECTIONAL CONTRACTS

Publish contract

How it works

Verifies a 
“provider 
contract”

Consumer

Mock

1

Produces a 
“consumer 
contract”

2

This is called the 
“cross contract validation”

Pactflow will perform a 
check, to confirm that 

the Pact contract is 
compatible with the 

Provider OAS 

5

4

Provider

Provider Testing 
Tool

3

Evidence Evidence



PROBLEM STATEMENT
(why bi-directional contracts?)



Non-technical reasons:

1. Steep learning curve - Education often required to get the most of Pact
2. Technical investment required - Pact requires both parties of an integration point to write and maintain tests
3. Developer only - Pact requires access to the source code, excluding some roles from participating
4. Suitability for API first design workflows - many organisations have a provider-first workflow
5. Convincing people - there are a number of excuses!

Technical reasons:

1. Applicability to certain architectures / classes of problems - Pact is not ideally suited to working with API 
gateways, 3rd party APIs or APIs with large numbers of consumers. 

2. UI testing - Creating pacts from UI tests can lead to pain if not done carefully

PROBLEM STATEMENT

why try a different approach?



HOW PACT WORKS
(Async/Messages)

Brought to you by



{

“id”: 1234,

“items”:[

...

],

}

Consumer

Contract

Provider 
(Producer)

HOW IT WORKS > ASYNC > TERMINOLOGY

Product Catalog

Order Management

topic: products

content-type: application/json



HOW IT WORKS > ASYNC

Order 
Management

publish event

Product Catalog



HOW IT WORKS > ASYNC

Pact

Step 1: test the consumer (expects to receive…)

Order 
ManagementProduct Catalog



HOW IT WORKS > ASYNC

Pact

Order 
ManagementProduct Catalog

Step 1: test the consumer (expects to receive…)

{

“id”: 1234,

“items”:[

...

],

}

message



HOW IT WORKS > ASYNC

Pact

{

“id”: 1234,

“items”:[

...

],

}

Order 
ManagementProduct Catalog

Step 1: test the consumer (expects to receive…)

message

✔
Pact checks:

1. It can invoke the message handler
2. Handler can successfully process 

event



HOW IT WORKS > ASYNC

Pact

Step 2: share the contract with the Pactflow

Order 
ManagementProduct Catalog

message



HOW IT WORKS > ASYNC

Pact

Step 3: test the provider

Order 
ManagementProduct Catalog

invoke function

message



HOW IT WORKS > ASYNC

Pact

Step 3: test the provider

Order 
ManagementProduct Catalog

invoke function

{

“id”: 1234,

“items”:[

...

],

}

produces event

✔

message



HOW IT WORKS > ASYNC

Pact

Step 3: test the provider

Order 
ManagementProduct Catalog

invoke function

{

“id”: 1234,

“items”:[

...

],

}

produces event

message

✔
Pact checks:

1. It can invoke the message producer fn
2. fn produces correct message



REDUCING THE COST

Unit Test

Integration

E2E

Cheaper

Expensive

Number of tests

Sp
ee

d
C

os
t o

f f
ee

db
ac

k 
$

C
on

fid
en

ce

step 1: review test pyramid

Over investment here



REDUCING THE COST

step 2: rebalance test pyramid

Unit Test

Contract tests

Integration 
+ functional

E2E

Cheaper

Expensive

Number of tests

Sp
ee

d
C

os
t o

f f
ee

db
ac

k 
$

C
on

fid
en

ce

Add contract tests to test 
integration points

Increase functional and 
integration test coverage for 

business logic



REDUCING THE COST

step 2: rebalance test pyramid

Unit Test

Contract tests

Integration 
+ functional

E2E

Cheaper

Expensive

Number of tests

Sp
ee

d
C

os
t o

f f
ee

db
ac

k 
$

C
on

fid
en

ce Savings



REDUCING THE COST

step 3: shrink the pyramid

Unit Test

Contract tests

Integration 
+ functional

E2E

Cheaper

Expensive

Number of tests

Sp
ee

d
C

os
t o

f f
ee

db
ac

k 
$

C
on

fid
en

ce $$$

Further savings



REDUCING THE COST

step 4: continuous testing and monitoring

Unit Test

Contract tests

Integration 
+ functional

E2E

Cheaper

Expensive

Number of tests

Sp
ee

d
C

os
t o

f f
ee

db
ac

k 
$

C
on

fid
en

ce

● Canaries, smoke tests and automated rollbacks
● Semantic monitoring / synthetic transactions
● Improved telemetry and observability
● Aggregated logging and access for the team
● Tune monitoring & alerting

Post deployment

Before deployment

Continuous testing

Investment here



WORKSHOP
(https://github.com/pact-foundation/pact-workshop-js)



WORKSHOP
(https://github.com/pact-foundation/pact-workshop-js)

RE
MIN

DE
R

Pre-requisites

1. Node.js 16, 18 or 20
2. Clone project
3. Run npm i
4. Have a PactFlow account and a read-write API token
5. Comfortable operating a command line / terminal
6. OSX or Linux environment ideal



● Workshop arranged as a series of steps, each 
in a separate branch

● We will progress each step as a group, but you 
are encouraged to explore as we go

● Q&A will be available at the end of each step
● Each step has specific learning objectives

✨ Follow the README!

AGENDA + HOUSEKEEPING

Participating
Getting the most out of the workshop

https://github.com/pact-foundation/pact-workshop-js/blob/master/LEARNING.md


AGENDA + HOUSEKEEPING

Participating
Where am I?



WORKSHOP: USE CASE

Product API

JSON/HTTP



AGENDA + HOUSEKEEPING

https://docs.pactflow.io/#configuring-your-api-token

Fetching your API Token (step 12)
Settings > API Tokens > read/write token

https://docs.pactflow.io/

